

GTS NX

2D順打深開挖分析

台灣邁達斯

<u>Stage0.未施工前</u>

Stage1.連續壁(24m)和中間柱施工

Stage3.水平支撐1(位置-1m)

Stage4.開挖2(開挖深度-5m)

Stage5.水平支撐2(位置-4m

Stage6.開挖3(開挖深度-9m)

<u>Stage7.水平支撐3(位置-8m)</u>

Stage8.最終開挖 (-12m)

Part1.2D土壤分布面特徵模型

tions						
General	Geometry/Mes	h/Connections	Loads/B.C.	Results		
	eneral Application License Unit System Material raphics Work View Selection Snap Guider		 General User Na User Co Tempor Åuto Saving Windo Show 	ul me mpany ary Folder) Save File Duration(Sec) W w/Hide Start Page	User MIDAS IT C:\Temp\ True 1800 False	
Geometry Element Advanced 現境 (使用		参 數 語 預設會	<u>調整</u> 參數)			
Reset	Reset All	Customiz	e Shortcut K	ey O	K Cancel	Apply

alysis Setting		
oject Title	Enginee	r
sc.		
Model Type	Gravity D	rection
	品作	
O Axisymmetric	1年1日	
切	換單位	
kN v m	× 1	V SPC V
1998 (Jan		
nitial Parameters Water	Parameters	
Gravity Acceleration(g)	9.8066	i5 m/sec²
		0 [T]
Initial Temperature		

the same

單位使用KN/m/J/sec

選擇封閉線特徵

Imprint X	Target Object:選取特徵面
Point Curve Imprint Auto	
Selected 1 Target Object(s)	
Selected 28 Tool Object(s)	
Direction	
O Select Tool Direction	
O 2 Points Vector ☑ X ☑ Y ☑ Z	
0, 0, 0	
1, 1, 1	
Direction of Shortest Path Line	
🐺 🔗 📫 OK Cancel Apply	Tool Object:選取所有線特徵

使用最短距離投影特徵

Step1.匯入_中間柱&支撑.X_T

搜尋位置(I): 📙 202408_GT	SNX_2D0顧打深開挖分析 🛛 🗸 🕼 🎾 🔝 🔻		
★ 快速存取 具面 媒體 本機	2D膜打藻糖扩 桥火T	24頃打采製設分析 中種柱&支援XT		
網路	檔案名稱(N):	2创順打深間挖分析_中間柱&支撐	~	開散(0)

Step2.投影線特徵

Step3.刪除線特徵

Part2.土壤有限元素模型

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)	Unit Weight (Saturated) (KN/m³)	Cohesion(C) (KN/m²)	Friction Angle(φ)
沖積層soil1	8,000	0.35	17	18	15	20
粉砂層soil2	19,500	0.3	17.65	18.65	10	30
風化土壤soil3	36,500	0.33	18.5	19.5	17.5	31
風化岩soil4	150,000	0.3	21	22	50	33

MDAS 註:範例相關參數使用假設條件。

No	Name	Type	Sub-Type	Create
				Modify
				Сору
				Delete
				Import
				Renumber

相鄰面特徵/合併節點/網格尺寸:1 (關閉網格集各別建立)

選取開挖1_soil1幾何集特徵

網格集名稱:開挖1_soil1

相鄰面特徵/合併節點/網格尺寸:1 (關閉網格集各別建立)

選取開挖2_soil1幾何集特徵

網格集名稱:開挖2_soil1

<u>名稱:土1/屬性:沖積層/網格尺寸:1.5</u> 相鄰面特徵/合併節點/關閉網格集各別建立

名稱:土2/屬性:粉砂層/網格尺寸:1.5 相鄰面特徵/合併節點/關閉網格集各別建立

<u>名稱:土3/屬性:風化土壤/網格尺寸:2</u> 相鄰面特徵/合併節點/關閉網格集各別建立

<u>名稱:土4/屬性:風化岩石/網格尺寸:2</u> 相鄰面特徵/合併節點/關閉網格集各別建立

Part3.結構有限元素模型

使用Edge特徵提取1D元素作連續壁元素

名稱:連續壁

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
C350	27,325,838	0.167	23.53596

名稱:筏基梁版 屬性:筏基梁版

使用	Edge 特征	對提取1I	D 元素	
				_

	Modulus of Elasticity(E) (KN/m ²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
C350	27,325,838	0.167	23.53596

Property勾選顯示1D截面(厚度)

中間柱-1D Beam

<u>中間柱(深24m)</u> (H350 x250 x12 x19)-Beam

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
Steel	210,000,000	0.3	77

Property勾選顯示Beam截面

水平支撑1-1D Truss

<u>水平支撐1-H型鋼-Steel</u> (H300 x300 x13 x21)-Truss

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
Steel	210,000,000	0.3	77

MIDAS

Create	Modify Topo,	Extract	Interface	H Hinge *	
式 Delete	🛄 Parameters	Divide	∔ Pile/Pile Tip	Infinite	Fluid Boundary
🔀 Modify	Connection	Measure	Free Field	📶 Seepage Cut Off	
			Element		

Water Level	×
Edge Face	
Selected 6 Target Edge(s)	
Variable Axis X 🗸	
Interval 1	
Name 初始水位線	
OK Cancel Appl	у

選取線特徵

自動轉換成空間函數

Model Analysis Results

選取線特徵

Water Level		×
Edge Face		
📄 Select	ted 6 Target Edge(s)	
Variable Axis	x ~	
Interval	0.5	
Name 最終開挖水	K位線 OK Cancel Apply	v .

Part5.施工階段

GTS NX提供多種施工階段類型

 Stress

 Seepage

 Stress-Seepage-Slope

 Consolidation

 施工階段選擇 Stress

Seepage-Thermal Stress Heat of Hydration(Thermal Stress) Fully Coupled Stress Seepage Heat

Stage0

 Stage0.未施工前

 Stage1.連續壁(24m)和中間柱施工

 Stage2.開挖1(開挖深度-2m)

 Stage3.水平支撐1(位置-1m)

 Stage4.開挖2(開挖深度-5m)

 Stage5.水平支撐2(位置-4m)

 Stage6.開挖3(開挖深度-9m)

 Stage7.水平支撐3(位置-8m)

 Stage8.最終開挖(-12m)

 Stage9.筏基梁版(t=1m)

Stage1

Stage1.連續壁(24m)和中間柱施工 Stage2.開挖1(開挖深度-2m) Stage3.水平支撑1(位置-1m) Stage4.開挖2(開挖深度-5m) Stage5.水平支撐2(位置-4m) Stage6.開挖3(開挖深度-9m) Stage7.水平支撐3(位置-8m) Stage8.最終開挖 (-12m) Stage9. 筏基梁版(t=1m)

MIDAS

Stage6

Stage7

Part6.分析計算

分析名稱:2D順打深開挖計算 分析類型:Construction Stage

CONGCI 3 //19731 238 1 444	20順打深開挖計算				
			Analysis Control	M	
Construction Stage		~	Output Control		
Set	et Construction Stage Set-1 V				
All Sets		<< >>	Active	Sets	
選擇執	行計	寛之施工	階段定	義	
	пдны		TIXA		
	Construction Stage Set All Sets 選擇教	Construction Stage Set Constru All Sets 選擇執行計	Construction Stage Set Construction Stage Set-1 All Sets 《 >> 選擇執行計算之施工	Construction Stage Set Construction Stage Set-1 All Sets Active U U U U U U U U U U U U U U U U U U U	Construction Stage Analysis Control Output Control All Sets All Sets Active Sets 選擇執行計算之施工階段定義

Construction Stage

Linear Static Nonlinear Static Construction Stage

Eigenvalue Response Spectrum Linear Time History(Modal) Linear Time History(Direct) Nonlinear Time History Nonlinear Time History + SRM 2D Equivalent Linear Consolidation Fully Coupled Stress Seepage Seepage(Steady-state) Seepage(Transient) Slope Stability(SRM) Slope Stability(SAM)

Part7.分析結果

🗹 Clear Strain

Slope Stability(SRM)

MIDAS

Stage0.未施工前
Stage1.連續壁(24m)和中間柱施工
Stage2.開挖1(開挖深度-2m)
Stage3.水平支撐1(位置-1m)
Stage4.開挖2(開挖深度-5m)
Stage5.水平支撐2(位置-4m)
Stage6.開挖3(開挖深度-9m)
Stage7.水平支撐3(位置-8m)
Stage8.最終開挖(-12m)
Stage9.筏基梁版(t=1m)

[DATA] 12時時三時間地計算。1949年9月第五時間約~194), 19CR-1 (LOAD-1.000), [UNIT] 185, m

GTS NX 結構互制 台灣邁達斯

Spring

kgf/cm³

MIDAS

• 柱底固定端

Panel Zone Effects	×
Auto Calculate Panel Zone Offset Distances Offset Factor : 0.75 Output Position : Panel Zone Offset Position Do not Calculate	
OK Cancel	

Pa	nel Zone Effects		×
	O Auto Calculate Pane	Zone Offset Distances	
	Offset Factor :	1	
	Output Position :	Panel Zone Offset Position	
$\left(\right)$	Do not Calculate		
		OK Cancel	

GTS NX and Gen - 分析結果比對 (Displacement)

GTS NX

MIDAS

Gen

Property and Material Number調整

Model			+ >
Item		ID	Color
		12	^
	🗖 🖊 B1 (Beam)	13	
	🗖 🖊 B5 (Beam)	14	
	🗖 🖊 G4 (Beam)	29	
		36	
	🗖 🖊 G5 (Beam)	33	
		34	
		30	
	G7 (Beam)	32	
		35	
	🗖 🖊 G8 (Beam)	42	
		31	
		38	
	🗖 🖊 B2 (Beam)	40	
		41	
	🗖 🖊 B6 (Beam)	39	
	🗖 🖊 B4 (Beam)	43	
		37	
	🗖 🦯 G4 (Beam)	47	— ~
<			>
	a difference in		

Analysis ņх Item ID Color ⑦ C:\TEMP\202408_GTS NX深開挖課... Function History Output Probe Boundary Condition 🖶 🗌 🌈 Boundary Set-1 1 Boundary Set-2 2 3 4 BC Set-5 5 🚊 🗔 🔩 Static Load . Default Self-Weight 1 2 📥 🗖 👖 🗖 DL 🗄 🔽 🎙 Gravity +----3 4 5 - 🗔 👽 Dynamic Load ** ** ** ** ** - 🗹 🔮 Thermal Load > Model Analysis Results

構互制分析定義

拖曳相關網格集/條件/載荷

In-Situ Analysis

Apply K0 Condition

Estimate Initial Stress of Activated Elements

Clear Displacement

Clear Strain

4.84806e-03

4.76071e-03

4.67336e-03

4.58600e-03

4.32395e-03

GTS NX

3D順打深開挖分析

台灣邁達斯

①深開挖階段

Stage0.未施工前
Stage1.連續壁(24m)和中間柱施工
Stage2.開挖1(開挖深度-2m)
Stage3.水平支撐1(位置-1m)
Stage4.開挖2(開挖深度-5m)
Stage5.水平支撐2(位置-4m)
Stage6.開挖3(開挖深度-9m)
Stage7.水平支撐3(位置-8m)
Stage8.最終開挖(-12m)
Stage9.筏基梁版(t=1m)

②地下室結構施作階段

Stage10.拆除水平支撐3
Stage11. B3F結構施工(t=0.3m) (位置-8m)
Stage12.拆除水平支撐2
Stage13. B2F結構施工(t=0.3m) (位置-4m)
Stage14.拆除水平支撐1
Stage15.拆除中間柱1
Stage13. B1F結構施工(t=0.4m)

<u>③建物施作階段</u> 匯入GEN模型進行結構互制計算

Part1.3D 實體模型

依照土壤深度分布劃分 (-7.6m/-20m/-40m)

<u>選取開挖區域表面特徵</u> (z方向/-24m)

依照施工階段特徵和土壤深度劃分 (-1m/-2m/-4m/-5m/-7.6/-8m/-9m/-12m/-20m)

MIDAS

Target Select:依序選擇地表特徵

點選Part,鍵盤F2編輯名稱

幾何隨機顏色顯示

框選所有地表特徵

相鄰特徵面檢視

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)	Unit Weight (Saturated) (KN/m³)	Cohesion(C) (KN/m²)	Friction Angle(φ)
沖積層soil1	8,000	0.35	17	18	15	20
粉砂層soil2	19,500	0.3	17.65	18.65	10	30
風化土壤soil3	36,500	0.33	18.5	19.5	17.5	31
風化岩soil4	150,000	0.3	21	22	50	33

MDAS 註:範例相關參數使用假設條件。

MIDAS

混合元素/相鄰面特徵/合併節點/網格尺寸:1.5 (關閉網格集各別建立)

選取開挖1_soil1幾何集特徵

網格集名稱:開挖1_soil1

混合元素/相鄰面特徵/合併節點/網格尺寸:1.5 (關閉網格集各別建立)

開挖區域依照幾何集順序網格劃分

MIDAS

<u>名稱:土1/屬性:沖積層/網格尺寸:2.5</u> 混合元素/相鄰面特徵/合併節點

<u>名稱:土2/屬性:粉砂層/網格尺寸:5</u> 混合元素/相鄰面特徵/合併節點

<u>名稱:土3/屬性:風化土壤/網格尺寸:7.5</u> 混合元素/相鄰面特徵/合併節點

筏基梁版-2D Shell

中間柱-1D Beam

<u>中間柱(深24m)</u> (H350 x250 x12 x19)-Beam

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
Steel	210,000,000	0.3	77

水平支撑1-1D Beam

使用Edge特徵提取1D元素作水平支撐1元素

<u>水平支撐1-H型鋼-Steel</u> (H300 x300 x13 x21)-Beam

	Modulus of Elasticity(E) (KN/m²)	Poisson's Ratio(v)	Unit Weight(γ) (KN/m³)
Steel	210,000,000	0.3	77

B3F(-8m)結構施工-2D Shell

名稱: B3F結構 屬性:B3F結構T0.3

B2F(-4m)& B1F(0m)結構施工-2D Shell

名稱: B1F結構 屬性:B1F結構T0.4

Part6.施工階段

GTS NX提供多種施工階段類型

 Stress

 Seepage

 Stress-Seepage-Slope

 Consolidation

 施工階段選擇 Stress

Seepage-Thermal Stress Heat of Hydration(Thermal Stress) Fully Coupled Stress Seepage Heat

①深開挖階段 Stage0.未施工前

MIDAS

Stage2.開挖1(開挖深度-2m) Stage3.水平支撐1(位置-1m) Stage4.開挖2(開挖深度-5m) Stage5.水平支撐2(位置-4m) Stage6.開挖3(開挖深度-9m) Stage7.水平支撐3(位置-8m) Stage8.最終開挖 (-12m) Stage9.筏基梁版(t=1m)

②地下室結構施作階段 Stage10.拆除水平支撐3 Stage11. B3F結構施工(t=0.3m) Stage12.拆除水平支撐2 Stage13. B2F結構施工(t=0.3m) Stage14.拆除水平支撐1 Stage15.拆除中間柱1 Stage16. B1F結構施工(t=0.4m)

③建物施作階段

Stage15

②地下室結構施作階段 Stage10.拆除水平支撐3 Stage11. B3F結構施工(t=0.3m) Stage12.拆除水平支撐2 Stage13. B2F結構施工(t=0.3m) Stage14.拆除水平支撐1 Stage15.拆除中間柱1

Stage16. B1F結構施工(t=0.4m)

③建物施作階段 可以匯入GEN模型進行結構互制計算

<u>Part7.分析計算</u>

分析名稱:深開挖計算 分析類型:Construction Stage

Title	深開挖計算				
Description				Analysis Control	P
Solution Type	Construction Stage		Output Control	P	
Construction Sta	ge Set Construction Stage Set-1 V			-	
Analysis Case Mo	del				
	All Sets	<< >>	Active 5	Sets	
	雅福平	h 行 計 笛	了限码分	了 美	
	达1辛刊	们可异人加		二我	

Construction Stage

Linear Static Nonlinear Static Construction Stage Eigenvalue Response Spectrum Linear Time History(Modal) Linear Time History(Direct) Nonlinear Time History

Nonlinear Time History Nonlinear Time History + SRM 2D Equivalent Linear Consolidation Fully Coupled Stress Seepage Seepage(Steady-state) Seepage(Transient) Slope Stability(SRM) Slope Stability(SAM)

開啓多核計算/GPU計算

Analysis Option Control		×
Number of Processors		10 🔹
Element Formulation Hybrid (Accuracy) Reduced (Efficiency) Standard (Stability)		
Equation Solver Auto Multifrontal	ODense	O AMG
Convergence Tolerance		1e-006
2D Element Setting Unique Shell Normal Gener Control Transverse Deform	ation nation (Hybrid)	20 [deg]
Set Default	ОК	Cancel

Part8.分析結果

Clear Displacement Clear Strain Slope Stability(SRM)

×1-

①深開挖階段

Stage0.未施工前 **Stage1.連續壁(24m)**和中間柱施工

Stage2.開挖1(開挖深度-2m) Stage3.水平支撐1(位置-1m) Stage4.開挖2(開挖深度-5m) Stage5.水平支撐2(位置-4m) Stage6.開挖3(開挖深度-9m) Stage7.水平支撐3(位置-8m) Stage8.最終開挖(-12m) Stage9.筏基梁版(t=1m)

N.

②地下室結構施作階段 Stage10.拆除水平支撐3 Stage11. B3F結構施工(t=0.3m) Stage12.拆除水平支撐2 Stage13. B2F結構施工(t=0.3m) Stage14.拆除水平支撐1 Stage15.拆除中間柱1 Stage16. B1F結構施工(t=0.4m)

③建物施作階段

